Furthermore, different oxygen species were unambiguously identified by matching the oxygen 1s binding energies from the in situ measurements and first principles predictions. Auger (and XPS) peaks shift to higher KE. By carefully comparing the spectra of various photoemission peaks of different compounds, we conclude that the binding energy of 102.2 eV for the La 4d 7/2 peak can be used as the internal calibration standard for all considered samples. Our results also clearly demonstrate the vital difference between performing the ex situ analysis after exposure of the sample to the atmosphere and the in situ analysis. Adventitious carbon or lattice oxygen, as conventional calibration standard species for energy scale, is only suitable for one or few in situ prepared surfaces. The XPS 13 is the same great laptop we loved in 2020 but the OLED touchscreen option really kicks the premium. To form different compounds, five sample treatments were performed including heating in vacuum and treatment with O 2, CH 4, CO 2, and H 2O, which are all relevant to OCM reaction conditions. Dell XPS 13 OLED (9310) review: Beautiful design topped with a gorgeous display. In this work, a new and reliable way of XPS calibration is developed by applying various in situ preparations for a nanorod La 2O 3 catalyst to intentionally form different lanthanum compounds, followed by XPS characterization and corroboration with first principles calculations. Lanthanum oxide (La 2O 3) has attracted special attention as a promising catalyst for the oxidative coupling of methane (OCM) reaction.
However, the complexity in their electronic structures makes unambiguous characterization, such as X-ray photoelectron spectroscopy (XPS), very challenging. Due to their unique electronic properties, they are the subject of fundamental and practical interest. Rare earth oxides have seen increased usage over the years in batteries and catalysts.